Once-Weekly Exenatide in Youth with Type 2 Diabetes: A Pivotal Phase III Randomized Study

William V. Tamborlane,1 Raafat Bishai, David Geller,3,4 Naim Shehadeh,5 Dalia Al-Abdulrazzaq,6,7 Eva Karoly,8 Orlando Doehring,9,10 Debra Carter,2 John Monyak,11 C. David Sjöström12

1Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; 2Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; 3The Center for Endocrinology, Diabetes, and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, USA; 4Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 5Bruce Rappaport Faculty of Medicine, Technion, and Institute of Diabetes and Endocrinology, Rambam Health Care Campus, Haifa, Israel; 6Department of Population Health, Dasman Diabetes Institute, Dasman, Kuwait; 7Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; 8St. Rokus Hospital, Baja, Hungary; 9Biometrics, Late CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; 10PHASTAR, Biometrics, London, UK; 11Biometrics, Late CVRM, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; 12Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
Disclosures

Acknowledgments

The authors thank the patients, their families, and the study investigators for making this study possible. The authors thank IQVIA for conducting the study. The authors thank the trial team at the Dasman Diabetes Institute, Kuwait: Dr. Hessa Al-Kandari, Head of the Population Health Department and Saud Aljenaei, Samia Warsame, and Fouzeyah Othman as well as Dr. Azza Shaltout and Dr. Dina Omar for their efforts at the start of the trial. The authors thank Steven Tresker of Cactus Life Sciences (part of Cactus Communications) for medical writing, paid for by AstraZeneca.

ClinicalTrials.gov: NCT01554618
Background

- The incidence and prevalence of type 2 diabetes in children and adolescents is increasing, particularly among minority racial and ethnic groups: this is partially due to the global epidemic of childhood obesity.1–4
- The few available approved pharmacologic treatments—metformin, insulin, and liraglutide—have limitations.1,3,5–7
- To date, no once-weekly injectable drug has been approved by the United States and European regulatory agencies for use in youth with type 2 diabetes.
- Exenatide, a glucagon-like peptide-1 receptor agonist, is the first drug approved in adults with type 2 diabetes that can be administered once weekly.8,9
- This study evaluated the efficacy and safety of once-weekly exenatide injections for the treatment of children and adolescents with type 2 diabetes.

Study Design

Parallel-group, Phase III study

Randomized

Exenatide 2 mg

Placebo

5:2

United States
14 sites

Mexico
5 sites

Hungary
3 sites

Israel
3 sites

Bulgaria
1 site

Kuwait
1 site

Hungary
5 sites

United States
14 sites

Israel
3 sites

Bulgaria
1 site

Kuwait
1 site
Study Design (cont’d)

• 24 week, double-blind, placebo-controlled assessment period followed by a 28-week, open label extension period.

• Youth with type 2 diabetes aged between 10 and <18 years with HbA1c 6.5% to 11% for participants not taking insulin or a sulfonylurea and 6.5% to 12.0% for participants taking insulin or a sulfonylurea.

• Randomization was stratified by HbA1c at screening (<9.0% or ≥9.0%).

• No titration was performed when starting the 2-mg once-weekly dose of exenatide; dosing adjustments during the trial were prohibited.

• **Primary endpoint:** change in HbA1c from baseline to week 24 in the exenatide and placebo groups.
Results – Primary Endpoint

• 83 participants were randomized (once weekly exenatide, 59; placebo, 24) and entered the double-blind controlled assessment period
 – of these, 72 (86.7%) completed 24 weeks of treatment (once-weekly exenatide, 49; placebo, 23).

Change in HbA1c (%) from Baseline to Each Visit Between Baseline and Week 24 Using a Mixed Model with Repeated Measures Analysis; Least Squares Mean (Evaluable Analysis Set)

<table>
<thead>
<tr>
<th>Week</th>
<th>Exenatide (N=58)</th>
<th>Placebo (N=24)</th>
<th>2-sided P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>−0.1</td>
<td>0</td>
<td>0.033</td>
</tr>
<tr>
<td>8</td>
<td>−0.3</td>
<td>0</td>
<td>0.003</td>
</tr>
<tr>
<td>12</td>
<td>−0.4</td>
<td>0</td>
<td>0.012</td>
</tr>
<tr>
<td>18</td>
<td>−0.5</td>
<td>0</td>
<td>0.017</td>
</tr>
<tr>
<td>24</td>
<td>−0.6</td>
<td>0</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Between group LS mean difference at week 24: −0.85
95% CI: −1.51, −0.19
P=0.012
Results – Secondary Endpoints

Proportions of Participants Meeting HbA1c <7.0% at Week 24 and at Each Intermediate Visit

<table>
<thead>
<tr>
<th>Week</th>
<th>Exenatide n</th>
<th>Placebo n</th>
<th>2-sided P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>54</td>
<td>24</td>
<td>0.085</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>24</td>
<td>0.009</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>23</td>
<td>0.008</td>
</tr>
<tr>
<td>18</td>
<td>47</td>
<td>23</td>
<td>0.019</td>
</tr>
<tr>
<td>24</td>
<td>48</td>
<td>22</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Results – Secondary Endpoints (cont’d)

Fasting Plasma Glucose

- **Exenatide**
 - N=58
 - LS mean: −5.2
 - LS mean change from baseline (mg/dL)
 - Between group LS mean difference: −21.6
 - 95% CI: −49.0, 5.7
 - P=0.119

- **Placebo**
 - N=24
 - LS mean: 16.5

Body Weight

- **Exenatide**
 - N=58
 - LS mean: −0.59

- **Placebo**
 - N=24
 - LS mean: 0.63

Between group LS mean difference: −1.22
95% CI: −3.59, 1.15
P=0.307
Results – Safety

Number (%) of Participants with Adverse Events – On Treatment Controlled Assessment Period (Safety Analysis Set)

<table>
<thead>
<tr>
<th>Event</th>
<th>Exenatide (N=59)</th>
<th>Placebo (N=23)</th>
<th>Total (N=82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE</td>
<td>36 (61.0)</td>
<td>17 (73.9)</td>
<td>53 (64.6)</td>
</tr>
<tr>
<td>Any SAE</td>
<td>2 (3.4)</td>
<td>1 (4.3)</td>
<td>3 (3.7)</td>
</tr>
<tr>
<td>Any SAE with outcome of death</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Any AE related to treatment</td>
<td>15 (25.4)</td>
<td>5 (21.7)</td>
<td>20 (24.4)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>13 (22.0)</td>
<td>6 (26.1)</td>
<td>19 (23.2)</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>8 (13.6)</td>
<td>1 (4.3)</td>
<td>9 (11.0)</td>
</tr>
<tr>
<td>Major</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minor</td>
<td>1 (1.7)</td>
<td>1 (4.3)</td>
<td>2 (2.4)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (13.6)</td>
<td>1 (4.3)</td>
<td>9 (11.0)</td>
</tr>
</tbody>
</table>
Conclusions

• This study demonstrated the superiority of once-weekly exenatide versus placebo in reducing HbA1c levels at week 24 in children and adolescents with type 2 diabetes.

• Once-weekly exenatide allowed a greater proportion of patients to achieve strict glycemic targets after 24 weeks of treatment.

• Improved glucose control was observed in conjunction with trends toward decreased fasting plasma glucose levels and reduced body weight.

• There were low rates of hypoglycemia despite insulin use, and good gastrointestinal tolerability even in the absence of titration of the exenatide dose when starting treatment.