Single dose safety, pharmacokinetics, and pharmacodynamics of a potent PCSK9 synthesis inhibitor, AZD8233, in subjects with elevated LDL cholesterol

Catarina A.M. Nilsson2, Dinko Rekic2, Jane Knöchel2, Tina Rydén-Bergsten1, Linda Wernevik1, Cecilia Arfvidsson2, David Han4, Rikard Isaksson1, Eva Hurt-Camejo1, Scott Henry3, Sanjay Bhanot3, Brett P. Monia3, Rosanne Crooke3, Richard S. Geary3, Sotirios Tsimikas3, Alexis Hofherr1, Björn C.L. Carlsson1

1Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
2Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
3Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
4Parexel International, Early Phase Clinical Unit, Los Angeles, CA, USA

AHA 2020: Poster 13913
Disclosures

• This clinical study (NCT03593785) was sponsored by AstraZeneca

• Catarina A.M. Nilsson is an employee and shareholder in AstraZeneca

• Editorial support was provided by Oxford PharmaGenesis, Oxford, UK, and was funded by AstraZeneca
Introduction

PCSK9
- PCSK9 promotes degradation of LDL receptors in the liver, resulting in increasing circulating levels of LDL-C
- Monoclonal Abs and SiRNA that targets PCSK9 reduces LDL-C

AZD8233
- AZD8233 is a GalNAc-conjugated ASO (generation 2.5 cET) targeting the PCSK9 pre-mRNA to prevent production of PCSK9

\[\text{Triantennary } N\text{-acetyl galactosamine (GalNAc)} \]

GalNAc-conjugation gives selective delivery to hepatocytes via the asialoglycoprotein receptor\(^1\)

\(^1\)Schmidt K et al. Nucleic acids Res., 2017 45:2294-2306, Acknowledgement: Knut Andersson for illustration

Abs, antibody; ASO, antisense oligonucleotide; cET, constrained ethyl; GalNAc, triantennary N-acetyl galactosamine; LDL-C, low-density lipoprotein-cholesterol; mRNA, messenger RNA; PCSK9, proprotein convertase subtilisin/kexin type 9; siRNA, small interfering RNA
• Single-dose, single-blind, randomized, placebo-controlled, dose escalation study
• Objective: to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending doses in patients

Study design

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Placebo (n)</th>
<th>AZD8233 (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>20 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>30 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>60 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>90 mg</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>120 mg</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

R, randomization; SC, subcutaneous
Safety and tolerability

- Well tolerated, no SAEs reported
- No clinically relevant safety lab signals
- No injection site or flu-like reactions

- AZD8233 had a biphasic plasma profile with a fast distribution and a long terminal half-life of 2–3 weeks

Pharmacokinetics

PK, pharmacokinetics; SAE, serious adverse event
Baseline levels for lipid biomarkers

- Patients included should be statin-naive and have an LDL-C \(\geq 100 \text{ mg/dL} \) and < 190 mg/dL

Baseline levels

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo n = 14</th>
<th>4 mg n = 6</th>
<th>12 mg n = 6</th>
<th>20 mg n = 6</th>
<th>30 mg n = 6</th>
<th>60 mg n = 6</th>
<th>90 mg n = 6</th>
<th>120 mg n = 6</th>
<th>Total n = 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSK9 (ng/mL)</td>
<td>241 (1.2)</td>
<td>256.1 (1.2)</td>
<td>230.3 (1.3)</td>
<td>247.7 (1.2)</td>
<td>230 (1.2)</td>
<td>221.9 (1.1)</td>
<td>267.7 (1.2)</td>
<td>248.6 (1.3)</td>
<td>242.3 (1.2)</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>133.6 (1.2)</td>
<td>132.1 (1.1)</td>
<td>143 (1.1)</td>
<td>125.8 (1.1)</td>
<td>130.3 (1.1)</td>
<td>124.8 (1.1)</td>
<td>129.3 (1.1)</td>
<td>132.2 (1.2)</td>
<td>131.6 (1.1)</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>208 (1.1)</td>
<td>207.4 (1.1)</td>
<td>236.7 (1)</td>
<td>200.2 (1.1)</td>
<td>202.5 (1.1)</td>
<td>212.1 (1.1)</td>
<td>196.5 (1.1)</td>
<td>194.9 (1.2)</td>
<td>207.1 (1.1)</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>123 (1.3)</td>
<td>138.9 (1.6)</td>
<td>100.6 (1.5)</td>
<td>103.4 (1.4)</td>
<td>81.4 (1.7)</td>
<td>95.8 (1.4)</td>
<td>130.2 (1.3)</td>
<td>128.8 (1.2)</td>
<td>112.7 (1.5)</td>
</tr>
</tbody>
</table>

aSummary statistics are given as geometric mean (SD), values below limit of quantification were set to limit of quantification in this analysis. SD, standard deviation.
Potent and durable reduction of PCSK9 and LDL-C

Plots show geometric mean and SD of % change from baseline. n = 6 per AZD8233 cohort and n = 14 in placebo arm, PCSK9 measured as protein in plasma.
Reduction of total cholesterol, ApoB and non-HDL-C

Plots show geometric mean and SD of % change from baseline. n = 6 per AZD8233 cohort and n = 14 in placebo arm
ApoB, apolipoprotein B; HDL-C, high-density lipoprotein cholesterol
Reduction of ApoB/ApoA1 ratio, but no significant effect on Triglycerides and HDL-C

Plots show geometric mean and SD of % change from baseline. n = 6 per AZD8233 cohort and n = 14 in placebo arm

ApoA1, apolipoprotein A-I
Conclusions (NCT03593785)

- Single subcutaneous doses of AZD8233 up to 120 mg were generally safe and well tolerated
- Substantial and durable reductions in PCSK9 and LDL-C were observed
 - This indicates potential superior reductions in PCSK9 and LDL-C, compared to approved and late-stage PCSK9-targeting drugs, using monthly or less frequent administration of doses below 100 mg
- Consistent with the LDL-C decrease, dose dependent reductions in total cholesterol, non-HDL-C and ApoB were observed
- Based on these encouraging safety and pharmacodynamic results, a multiple ascending dose study in statin treated patients with dyslipidemia and LDL-C > 70 mg/dL is in progress